the blueprint of life [11]: DNA replication 1

DNA replication

Definition: the process of copying a parental DNA molecule to form two daughter DNA molecules.

  • Introduction to DNA replication
  1. DNA replication is essential for cell proliferation, i.e. mitosis, meiosis.
  2. DNA replication is a complex endeavor involving a series of enzyme activities.→see “DNA polymerases”
  3. DNA replication is performed in a semiconservative and semidiscontinuous mode.→see “DNA replication is semi-conservative”
  4. —DNA replication has 3 stages: initiation, elongation and termination.→next section
  5. —DNA replication is tightly regulated, involving various protein-protein, protein-DNA interactions.
  6. —DNA replication of prokaryote and eukaryote shares similar features, but is distinctive in details.
  •  Chemical Reaction of DNA replication

Essentials

1. Substrate: deoxynucleoside triphosphates(dNTPs)
2. Template: a primer-template junction
       DNA is synthesized by extending the 3’ end of the primer (free 3’-OH is required)
       – RNA primer or priming from a nick in DNA
3. Enzymes: DNA polymerases etc
4. Energy supply: Hydrolysis of pyrophosphate (PPi) is the driving force for DNA synthesis
5. Ions involved: Mg++ or Zn++
  • DNA polymerases
  • DNA polymerase I—
    • Pol I was the first enzyme discovered with polymerase activity, and it is also the best characterized one.
    • —Although abundant in cells (400/cell), Pol I is NOT the primary enzyme involved with bacterial DNA replication.
    • Main functions of Pol I: — (1) Fill any gaps in the new DNA that result from the removal of the RNA primer by its 5’ -3’ polymerase activity;   (2) Remove a new mispaired base by proofreading (校读)3’-5’ exonuclease (外切酶) activity. (3)Remove the RNA primer by its 5’-3’ exonuclease activity
The 3′–>5′ exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. (source)
  • DNA polymerase III
    • The primary polymerase in DNA replication, although lower in abundance (15/cell)than pol  →referred to as “replicase
    • functions: (1) 5’→3’ polymerase activity; (2) 3’→5’ exonuclease activity – proofreading
    • Catalytic efficiency: much higher than pol I→High processivity and polymerization rate
    • A multi-unit complex: “holoenzyme” (全酶)
  • DNA replication is semi-conservative 

Bet you all have learned it in high school, and the famous experiment by Meselson and Stahl. We still need to go over the points again as they are essentially important for what we will learn next.

The key to the mechanism of DNA replication is the fact that each strand of the DNA double helix carries the same information-their base sequences are complementary (we talked about this in THE BLUEPRINT OF LIFE [2]: PRIMARY AND SECONDARY STRUCTURE OF DNA).

During replication, the two parental strands separate and each acts as a template (that’s right, the template for DNA replication is DNA itself!)to direct the enzyme-catalyzed synthesis of a new complementary daughter strand with the normal base-pairing rules (A-T, C-G)

This semi-conservative mechanism was demonstrated experimentally in 1958 by Meselson and Stahl.

Hypotheses:

In the experiment:

E. coli cells were grown for several generations in presence of the stable heavy isotope 15N so that their DNA became fully density labeled (both strands are 15N labeled: 15N/15N)

The cells were then transferred to medium containing only normal 14N and, after each cell division, DNA was prepared from a sample of the cells and analyzed on a CsCI gradient using the technique of equilibrium (isopycnic) density gradient centrifugation, which separates molecules according to differences in buoyant density.

After the first cell division, when the DNA had replicated once, it was all of hybrid density, in a position on the gradient half way between fully labled (15N /15N )and fully light (14N/14N). After the second generation in 14N, half of the DNA was hybrid density and half fully light.

Thus, two of the hypotheses were denied, left us with the semi-conservative mechanism.

After each subsequent generation, the proportion of 14N/14N increased, while some DNA of hybrid density persisted. Thus the semi-conservative mode of DNA replication is confirmed: each daughter molecule contains one parental strand and one newly-synthesized strand.

DNA replication & PCR, General Biology, Open Courses at UC-Berkeley

General Biology, Great open courses given by Gary L. Firestone, Michael Meighan Jasper D. Rine and Jennifer A. Doudna, professors at UC-Berkeley.

There is more to DNA replication than we talked about yesterday so I tried to upload this video to help you learn more. 

“tried? ”

“Well, turned out ‘ DNA replication and PCR open course at Berkeley.mp4 exceeds the maximum upload size (8 MB)for this site.'”

So I would just provide the link where you can watch it online.

After watching it, maybe you will find more than just DNA replication: you may as well find how it feels going to college.

I look forward to it every time I have finished an open course online. Hope you do, too.

>>click here to watch the video

 

the blueprint of life [10]: eukaryotic structure of DNA 3

let’s go over the terms again. Make sure you all know what they mean.

•Nucleus: 细胞核; Nucleolus: 核仁; Nucleoid: 类核

• Mitosis: 有丝分裂; Meiosis: 减数分裂

Interphase: 分裂间期; Prophase: 分裂前期; Metaphase: 分裂中期; Anaphase: 分裂后期; Telophase: 分裂末期

• Histone: 组蛋白

• Nucleosome: 核小体

•Chromosome: 染色体; Chromatin: 染色质; eu- 真染色质; hetero- 异染色质

  • Sister chromotid 姐妹染色单体;
  • mitotic spindle 纺锤体
  • spindle microtubule纺锤丝

• Centromere: 中心粒; Telomere: 端粒

====================================================

The familiar picture of a chromosome is actually that of the most highly condensed state at mitosis(which we reviewed in the blueprint of life [8]: eukaryotic structure of DNA 1(chromatin structure)).

As the daughter chromosomes are pulled apart by the mitotic spindle at cell division, the fragile centimeters-long chromosomal DNA would certainly be sheared by the forces generated, were it not in this highly compact state.


mitosisi chromosome

picture above is from Instant Notes in Molecular Biology

  • As we can see from the picture, the chromosomal loops fan out from a central scaffold or nuclear matrix region consisting of protein(which we talked about last section). One possibility is that consecutive loops may trace a helical path along the length of the chromosome.
  • The centromere is the constricted region where the two sister chromatids are joined in the metaphase chromosome. This is the site of assembly of the kinetochore, a protein complex which attaches to the microtubules of the mitotic spindle.

(The microtubules act to separate the chromotids at anaphase)

The DNA of the centromere has been shown in yeast to consist merely of a short AT-rich sequence of 88 bp, flanked by two very short conserved regions, although in mammalian cells, centromeres seem to consist of rather longer sequences, and are flanked by a large quantity of repeated DNA, known as satellite DNA.

  •  Telomeres are specialized DNA sequence that form the ends of the linear DNA molecules of the eukaryotic chromosomes. A telomoere consists of up to hundreds of copies of a short repeated sequence(5′-TTAGGG-3′ in humans), which is synthesized by the enzyme telomerase in a mechanism independent of normal DNA replication.

The telomeric DNA forms a special secondary structure, the function of which is to protect the ends of the chromosome proper from degradation.(Independent synthesis of the telomere acts to counteract the gradual shortening of the chromosome resulting from the inability of normal replication to copy the very end of a linear DNA molecule—we will talk about this when reaching DNA replication)


Interphase chromosome

In interphase(S phase, to be exact), the genes on the chromosomes are being transcribed and DNA replication takes place. During this time, the chromosmes adopt a much more diffuse structure and cannot be visualized individually. It is believed, however, that the chromosomal loops are still present, attached to the nuclear matrix.

Genetics [9] Reproduction 2: Meiosis

During the process of reducing the number of chromosomes by half, the combination of alleles are rearranged to give recombinant gametes. Two distinct processes are involved. These are independent assortment of chromosomes and crossing-over.

Meiosis involves twosuccessive divisions, resulting in producing four cells, each containing half the number of chromosomes of the mother cell. There is NO replication between the two divisions.

We call the two divisions meiosis I and meiosis II, as in Chinese 减数第一次分裂 and 减数第二次分裂.  Here we will introduce more of meiosis than meets in high school textbooks.


Meiosis I

meiosis I is divided into prophase, metaphase, anaphase and telophase. Although they have the same names as the four phases in typical mitosis, behavior of chromosomes in these four phases in meiosis is very different from that in mitosis.

In prophase each chromosome pairs with its homolog (copy of the same chromosome inherited from the other parent). The paired chromosomes are called bivalents.  Each pair is held together by chiasmata(plural of chiasma). The exchange of genetic material is known as crossing-over.

chiasma (plural: chiasmata), in genetics, is thought to be the point where two homologous non-sisterchromatids exchange genetic material during chromosomal crossover during meiosis (sister chromatids also form chiasmata between each other, but because their genetic material is identical, it does not cause any change in the resulting daughter cells). (from wikipedia)

  • Prophase of meiosis is subdivided into five stages: leptotene, zygotene, pachytene, diplotene, and diakinesis.
  • In leptotene(literal translation:thin threads), the chromatin is seen to condense into very long thin strands, that appear tangled in the nucleus. As prophase proceeds chromosomes become shorter and thicker.
  • At zygotene(literal translation: yoked/linked threads), homologous chromosomes are seen as partially paired structures. They are still very elongated at this stage and chromosome pairs may overlap or interwine.
  • By patchytene(thick threads), pairing is complete, though it still isn’t possible identify clearly the individual chromatids in each bivalent.
  • As the homologous chromosomes begin to separate, transition from patchytene to diplotene(double threads) occurs.

This process begins at the centromeres and the bivalents are seen to be held together by chiasma.

The nuclear membrane and the nucleolus breaks down.

The four chromatids in each bivalent become identifiable and individual chiasma clearly to be identified.

  • Chromosomes carrying on condensing, the cell moves into diakinesis(moving apart), the final subdivision of prophase I.

The scheme below shows the five stages in prophase in a simple way:


At metaphase I the nuclear envelope breaks down, the bivalents lie across the equator of the cell with their centromeres attached to the microtbules←similar to the spindle in mitosis.

The dynamic action of the spindle causes one member of each homologous cell to move to the opposite poles of the cell.

↑WHY wouldn’t the action of the spindle tear apart the sister chromatids?

BECAUSE at metaphase the sister chromatids are held together by proteins called cohesions, which holds chiasmata in place and so holds the chromosomes together.


At anaphase I the cohesions in the chromosome arms are cut, allowing the homologs to separate.

In telophase I, two neclei form around the segregating chromosomes and a degree of chromosome decondensation is observed.


Meiosis II

The process of meiosis II closely resembles that of the typical mitosis.

In prophase II the chromosomes are seen to recondense within the two nuclei. At metaphase II, the nuclear membrane breaks down and chromosoms rearranged at the equator , the centromere splits and…At anaphase II and telophase II,the initial dipliod cell has divided into four…we already knew these in high school.

What we didn’t know in high school is that each of the  four haploid cells has a different genotype. And in many instances the group of four haploid cells may remain together and is known as a tetrad.


SUMMARY OF MEIOSIS

MEIOSIS, image from www.picstopin.com
MEIOSIS, image from www.picstopin.com

Genetics [8]:reproduction 1

Reproduction takes place by one of two methods, asexual or sexual.

  • Asexual reproduction involves the production of a new individual(s) from cells or tissues of a pre-existing organism. This process is common in plants and in many microorganisms. It can involve simple binary fission(splitting into two) in unicelluar microbes or the production of specialized asexual spores(孢子).

NATURAL VEGETATIVE PROPAGATION. New plants grow from parts of the parent. (image from: leavingbio.net)
NATURAL VEGETATIVE PROPAGATION. New plants grow from parts of the parent. (image from: leavingbio.net)

These processes may be exploited for commercial purposes as in the vegetative propagation of plants. More recently it has been possible to regenerate whole organisms from a single cell. This was first shown in carrots and frogs, but it has now been reported in mammals, and by implication, is possible in all mammals including humans.

Asexually reproduced organisms are genetically identical to the individual from which they were derived. A group of such genetically identical organisms is known as a clone.

Here I found an article at Buzzle , thinking it may help us learn more about animal cloning: http://www.buzzle.com/articles/animal-cloning/. Below is an excerpt of that article.

1, The Process of Animal Cloning
Initial attempts at artificially induced Animal Cloning were done using developing embryonic cells.

The DNA nucleus was extracted from an embryonic cell and implanted into an unfertilized egg, from which the existing nucleus had already been removed. The process of fertilization was simulated by giving an electric shock or by some chemical treatment method. The cells that developed from this artificially induced union were then implanted into host mothers.

The cloned animal that resulted had a genetic make-up identical to the genetic make-up of the original cell←the embryonic cell that contributes the DNA nucleus.

Since Dolly, of course, it is now possible to create clones from non-embryonic cells.

Now animal cloning can be done both for reproductive and non-reproductive or therapeutic purposes. In the second case, cloning is done to produce stem cells or other such cells that can be used for therapeutic purposes, for example, for healing or recreating damaged organs; the intention is not to duplicate the whole organism.

2. Ethics of Animal Cloning
While most scientists consider the process of animal cloning as a major break through and see many beneficial possibilities in it, many people are uncomfortable with the idea, considering it to be 'against nature' and ethically damning, particularly in the instance of cloning human beings.

The truth is that most of the general public are not aware of the exact details involved in cloning and as a result there are a lot of misconceptions about the entire matter. 

In recent times, there have been a spurt of new laws banning or regulating cloning around the world. In some countries, animal cloning is allowed, but not human cloning. Some advocacy groups are seeking to ban therapeutic cloning, even if this could potentially save people from many debilitating illnesses.

3. Points against Animal Cloning
In a large percentage of cases, the cloning process fails in the course of pregnancy or some sort of birth defects occur, for example, as in a recent case, a calf born with two faces. Sometimes the defects manifest themselves later and kill the clone.

4. Points for Animal Cloning
On the favorable side with successful animal cloning - particularly cloning from an adult animal - you know exactly how your clone is going to turn out. This becomes especially useful when the whole intention behind cloning is to save a certain endangered species from becoming totally extinct.←for more info, please see http://www.buzzle.com/articles/cloning-extinct-animals.html

That this is possible was shown by cloning an Indian Gaur in 2001. The cloned Gaur, Noah, died of complications not related to the cloning procedure.

Speaking of saving extinct animals, I couldn’t help but think of Jurassic Park. Although in the movies looks like cloning extinct animals brings threat to humans, or maybe it truly would in reality, the idea of cloning them remains magically attractive to me. Especially,  would the biodiversity allow, cloning those who became extinct because of our hunting.

What’s your idea? 

  • Before I lead you off the topic, let’s go back and talk about Sexual reproduction, which differs from asexual reproduction, in that it involves fusion of cells (gametes←we knew in high school as配子), one derived form each parent, to form a zygote. The genetic processes involved in the production of gametes allow for some genetic changes in offspring.

The production of gametes is referred to as gametogenesis. This may be a complex process, involving sexual differentiation and the production of highly differentiated male and female gametes, or in lower eukaryotes identical cells may fuse–isogamy.

isogamy , in biology, a condition in which the sexual cells, or gametes, are of the same form and size and are usually indistinguishable from each other. Many algae and some fungi have isogamous gametes. In most sexual reproduction, as in mammals for example, the ovum is quite larger and of different appearance than the sperm cell. This condition is called anisogamy. (infoplease.com) 

Whatever the biology of the process, one fact is obvious: gametogenesis must involve a halving of the chromosome number, otherwise each succeeding generation would have double the chromosome number of its parents.←That’s why, sexual reproduction is limited to species that are diploid or have a period of their life cycle in the diploid state.

Halving of chromosome numbers is achieved in a specialized form of cell division, meiosis(←we learned in high school as减数分裂),  which is only observed in gametogenesis.

We will talk about meiosis more detailedly next section.

the blueprint of life [7]: prokaryotic chromosome structure of DNA

First, let’s make sure the anatomy of prokaryotes are familiar to us:

anayomy bacteria_cellProkaryotes are the simplest living cells, typically 1~10μm in diameter, and are found in all environmental niches from the guts of the animals to acidic hot springs.

  • They are bounded by a cell (plasma)membrane comprising a lipid bilayer, in which are embeded proteins that allow the exit and entry of small molecules.
  • Most prokaryotes also have a rigid cell wall outside the plasma membrane, which prevents the cell from swelling or shrinking in environments where osmolarity differs significantly from that inside the cell.
  • Sometimes the cell wall is surrounded by an (often) polysaccharide envelope called capsule.
  • The cell interior (cytoplasm or cytosol) usually contains a single, circular chromosome compacted into a nucleoid and attached to the membrane.
  • There are no distinct subcelluar organelles in prokaryotes as in eukaryotes(except for the ribosomes核糖体).
  • The surface of a prokaryote may carry pili, which allow the prokaryote to attach to other cells and surfaces. Some prokaryotes also carry flagella, whose rotating motion allows the cell to swim.

====================================================

 

To talk about prokaryotic chromosome structure, we use E. coli (大肠杆菌)as the example.

cartoon e coli

 

 

 

 

  • —E. coli chromosome contains a single supercoiled circular DNA molecule of length 4.6 million bp.
  • —E. coli chromosome is highly folded: 1500 µm of DNA length versus ~1 µm of cell size, forming a structure called the nucleoid.
  • The nucleoid has a very high DNA concentration, perhaps 30~50 mg/ml, as well as containing all the proteins associated with DNA, such as polyerases, repressors(a protein that is determined by a regulatory gene, binds to a genetic operator, and inhibits the initiation of transcription of messenger RNA), etc.

nucleoid——————————————————————————-

DNA domains (loops)

DNA packingRemember this  famous electron micrograph of an E. coli cell we showed before? The cell was carefully lysed, all the proteins removed and then, it was spread on an EM grid to  reveal all of its DNA.
Several of such experiments revealed one level of organization of the nucleoid.
  • The DNA consists of 50~100 domains or loops, about 50~100 kb in size (kb: kilobase, a unit of measure of the length of a nucleic-acid chain that equals one thousand base pairs).
  • The ends of the loops are constrained by binding to a structure which probably consists of proteins attached to part of the cell membrane.
  • Not known whether the loops are static or dynamic, but one model suggests that the DNA may spool(wind) through sites of polyerase or other enzymic action at the base of the loops.

E coli DNA instant notes

 image above is from”Instant Notes in Molecular Biology”

Supercoiling of the genome

The E. coli chromosome as a whole is negatively supercoiled, although there is some evidence that indicates individual domains may be supercoiled independently. Electron micrographs indicate that some domains may not be supercoiled, perhaps because the DNA has become broken in one strand, where other domains clearly do contain supercoils.

The domains may be topologically independent. There is, however, no real biochemical evidence for major differences in the level of supercoiling in different regions of the chromosome in vivo


DNA-binding proteins

The looped DNA domains  of the chromosome are constrained further by inter-action with a number of DNA-binding proteins.

The most abundant of these are protein HU, a small basic (+charged) dimeric protein, which binds DNA non-specifically by the wrapping of the DNA aorund the protein.

And H-NS (formerly known as the protein H1), a monomeric neutral protein, which also binds DNA non-specifically in terms of sequence, but seems to have a preference for regions of DNA which are intrinsically bent.

These proteins are sometimes known as histone-like proteins, and have the effect of compacting the DNA, which is essential for the packaging of the DNA into the nucleoid, and of stabilizing and constraining the supercoiling of the chromosome.

the blueprint of life [6]: Chromosomal Structure of DNA 1

 
 
                                                       vocabulary

•Nucleus: 细胞核; Nucleolus: 核仁; Nucleoid: 类核

• Mitosis: 有丝分裂; Meiosis: 减数分裂

Interphase: 分裂间期; Prophase: 分裂前期; Metaphase: 分裂中期; Anaphase: 分裂后期; Telophase: 分裂末期

• Histone: 组蛋白

• Nucleosome: 核小体

•Chromosome: 染色体; Chromatin: 染色质; eu- 真染色质; hetero- 异染色质

• Centromere: 中心粒; Telomere: 端粒

====================================================

  • —WHAT is chromosome:
   Structure containing the genes of a cell and made of a single DNA molecule and its associated proteins.

CHROMOSOMES OF EUKARYOTES, shown by prof. Dong
CHROMOSOMES OF EUKARYOTES, shown by prof. Dong

CHROMOSOMES OF E. COLI, shown by prof. Dong
CHROMOSOMES OF E. COLI, shown by prof. Dong

  • HOW long is DNA in an chromosome

    how long is DNA in a chromosome
    HOW LONG IS DNA, shown by prof. Dong.

→A chromosome is too long to fit into a cell without compaction.

  • WHY is DNA packed into chromosomes
  1. Chromosome is a compact form of the DNA that readily fits inside the cell
  2. To protect DNA from damage
  3. DNA in a chromosome can be transmitted efficiently to both daughter cells during cell division
  4. Chromosome confers an overall organization to each molecule of DNA, which regulates gene expression as well as recombination
 ——————————————————————————
Diversity of chromosomes

in terms of:

  • Shape: circular or linear
  • Number: species-specific

eg. -fruitfly 8; -human 46; -horse 64; -dog 78; -chicken 78

-maize 20; -rice 24; -wheat 42

  • Copy number: haploid单倍体, diploid双倍体, polyploid 多倍体
  • Overall structure: highly different between prokaryotes 原核生物and eukaryotes真核生物
——————————————————————————-
Next section we will first talk about prokaryotic chromosome structure of DNA.

Mendel’s Genetics [5]: The dihybrid cross

Last sections we discussed inheritance where only a single gene was involved. The 3:1 ratio is the basic Mendelian ratio and everything that follows depends upon it.

The obvious next step is to look at a situation where the inheritance of two different inherited characters are studied at the same time, a dihybrid cross.

Again, we learn dihybrid cross by experiments. Let’s see what Mendel did:

He crossed two pure-bred starins of pea plants, one producing only round yellow seeds and the other only wrinkled green seeds.Round seeds are dominant over wrinkled ones; yellow seeds are dominant over green ones. Both phenotypes are determined by one single gene. 

(Why did Mendel use the seed characteristics as his focus of study instead of other traits of the pea plants? )

A cross between the two parents produced a F1 generation that consisted only of round yellow seeds. Self-fertilization of F1 yielded F2 generation, the seeds of which showing considerable diversity.

Four different phenotypes could be identified. Of 556 seeds analyzed, Mendel found 315 round yellow seeds, 108 round green seeds, 101 wrinkled yellow seeds and 32 round green seeds. Close to a ratio of 9: 3: 3: 1, which is referred to as the dihybrid ratio. 

dihybrid cross
THE 9:3:3:1 IN MENDEL’S EXPERIMENTS, image from Instant Notes in Genetics

——————————————————————————-

Interestingly, if we only focus on the round/wrinkled phenotype, the ratio of round seeds and wrinkled seeds is 3:1. the monohybrid ratio. Similarly, if we only focus on the yellow/green phenotype, the ratio of yellow seeds and green seeds is the monohybrid ratio as well.  Just as we said “The 3:1 ratio is the basic Mendelian ratio and everything that follows depends upon it”

Now I want to introduce a little bit mathematics into this section. Let’s see what happens when we use polynomial multiplication to explain the relationship between 9: 3: 3: 1 and 3:1:

  • (yellow: green)× (round: wrinkled)

= (yellow·round): (yellow·wrinkled): (green·round): (green·wrinkled)

  • known: yellow: green=3:1;         round: wrinkled=3:1

SO: (yellow: green)×(round: wrinkled)=(3:1)×(3:1)

=(3×3):(3×1):(1×3):(1×1)=9:3:3:1

  • Therefore, (yellow·round): (yellow·wrinkled): (green·round): (green·wrinkled)=9:3:3:1
  • Does this reasoning inspire you? What happens when it comes to a tri-hybrid ratio?

(3:1)×(3:1)×(3:1)=

(3×3×3):(3×3×1):(3×1×3):(3×1×1):(1×3×3):(1×3×1):(1×1×3):(1×1×1)

=27 : 9 : 9 : 9 : 3 : 3 : 3 : 1

See? Quite easy. The ratios for the three groups of phenotypes are simply multiplied across, and the 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1 ratio is obtained.

  • SO what happens when it comes to tetra-hybrid, penta-, hex-? What happens when it comes to n-hybrid?

I’m sure the answer is easy for you now, make the n phenotypes multiplied across, and the expected ratio is obtained. In plain mathematics, (3:1)^n

——————————————————————————-As noted before the 3:1 ratio can be distorted by factors such as incomplete dominance or lethal alleles. These also affect the 9:3:3:1 ratio, but other factors can also modify this ratio.

  1. The two different genes must not act on the same character. For instance, if the proteins encoded by the two genes are involved in the same biochemical pathway then the ratios of phenotypes resulting from the genotypes will be altered.
  2. If the two genes lie close together on the same chromosome, linkage happens and the ratio won’t be 9:3:3:1 either, as we mentioned in Review of Mendel’s Genetics, the very beginning of our Genetics study.

Testcross

As with the monohybrid cross, it is also possible to conduct a testcross with F1 generation of the dihybrid cross.

The blueprint of life [4]: Tertiary Structure of DNA

Finally, we come to the last part of the molecular structure of DNA.

4. Tertiary Structure of DNA – superhelix structure

—Advanced folding and intertwining of DNA molecules over the secondary structure .

DNA topology
 1. —Linear DNA:
  • —Commonly seen in eukaryotes,
  • with extreme length,
  • complementary sequence
  • included in the chromatin (the combination or complex of DNA and proteins that make up the contents of the nucleus of a cell)
  • interacting with other cellular components.
2. —Circular DNA:
(DNA frequently occurs in nature as closed-circular molecules, where the two single strands are each circular and linked together. The number of links is known as the linking number(Lk).)
  • Usually seen in prokaryotes, e.g. plasmid (质粒), circular bacterial chromosomes and many viral DNA molecules
  • —cccDNA (covalently closed circular DNA) → supercoiled or Relaxed;         ncDNA (nicked circular DNA): a nick (缺刻)formed by breaking  one phosphodiester bond—
  • two complementary single strands are each joined into circles, 5′ to 3′, and are twisted around one another by the helical path of DNA.
  • The molecule has no free ends and the two single strands are linked together a number of times corresponding to the number of double-helical turns in the molecule.

DNA topology1 DNA topology2

cccDNA  Topology 

  •  Supercoiled DNA

        Negative superhelix: natural status of cccDNA with less intra-               molecular tension (underwound effect)

        Positive superhelix: unnatural status with higher tension                           (overwound effect)

  • Relaxed circular DNA: intermediate between negative superhelix and positive superhelix
  • —Topological Equation of cccDNA
       L   =  T   +   W
—
—L=Linking number=total number of times one strand of the double helix links the other
—T=Twisting number= the number of times one strand completely wraps around the other strand
—W=Writhing number= the number of times that the long axis of the double helical DNA crosses over itself in 3-D space
    —   Features
—      1. The linking number of a closed-circular DNA is a topological                      property, that is one which cannot be changed without breaking            one or both of the DNA backbones. (A molecule of a given                            linking number is known as a topoisomer. Topoisomers differ                    only in their linking number)
        2. —Twisting number
              For B DNA, T>0(10 bp per turn)
              For A DNA, T>0(10.5 bp per turn)
              For Z DNA, T<0 (12 bp per turn)
        3. —Writhing number
             Relaxed: W=0
             Negative supercoils: W<0
             Positive supercoils: W >0

TWIST &WRITHE, from Instant Notes in Molecular Biology(3rd edition)
TWIST &WRITHE, from Instant Notes in Molecular Biology(3rd edition)

  •  Topoisomerases (enzymes used to regulate the level of supercoiling of DNA molecules)

topoisomerase
TOPOISOMERASE FUNCTIONING, shown by prof.Dong

To alter the linking number of DNA, the enzymes must transiently break one or both stands. There are two classes of topoisomerases:
Type I  Topoisomerase nick one strand of the DNA, changing 1                                  Linking-number at a time(+/-1 Lk)
Type II Topoisomerase, which requires the hydroloysis of ATP, break                   two strands of DNA, changing 2 Linking-number at a                                       time(+/-2Lk); also able to unlink DNA molecules.
Most topoisomerases reduce the level of positive or negative supercoiling, that is, they operate in the energetically favorable direction. (However, DNA gyrase, a bacterial type II enzyme, uses the energy of ATP hydrolysis to introduce negative supercoiling into hence removing positive supercoiling generated during replication.)
Topoisomerases are essential enzymes in all organisms; they are involved in replication, recombination and transcription.
Both type I and II enzymes are the target of anti-tumor agents in humans.
DNA superhelix
—Biological significance of Superhelix:
  • —DNA packing:
Eg.
DNA packing
This is a famous electron micrograph of an E. coli cell that has been carefully lysed, then all the proteins were removed, and it was spread on an EM grid to  reveal all of its DNA.
  • — DNA functioning:
        Negative supercoils serve as a store of free energy that aids in processes requiring strand separation, such as DNA replication and transcription; Strand separation can be accomplished more easily in negatively supercoiled DNA than in relaxed DNA.
1. DNA in cells is negatively supercoiled;
2.(-)supercoiling introduced by a topoisomerase II (gyrase 促旋酶) in prokaryotes and by nucleosome (核小体)in eukaryotes
3.Cruciform or bubble structures introduced by (-) supercoiling are potential protein-binding sites